Search Engines

Information Retrieval in Practice

All slides © Addison Wesley, 2008

Retrieval Models

* Provide a mathematical framework for
defining the search process

— includes explanation of assumptions
— basis of many ranking algorithms
— can be implicit
* Progress in retrieval models has corresponded
with improvements in effectiveness

e Theories about relevance

Relevance

 Complex concept that has been studied for
some time
— Many factors to consider

— People often disagree when making relevance
judgments

* Retrieval models make various assumptions
about relevance to simplify problem
— e.g., topical vs. user relevance

— e.g., binary vs. multi-valued relevance

Retrieval Model Overview

 Older models
— Boolean retrieval
— Vector Space model

* Probabilistic Models
— BM25
— Language models

* Combining evidence

— Inference networks
— Learning to Rank

Boolean Retrieval

* Two possible outcomes for query processing
— TRUE and FALSE
— “exact-match” retrieval
— simplest form of ranking

* Query usually specified using Boolean
operators
— AND, OR, NOT
— proximity operators also used

Boolean Retrieval

* Advantages
— Results are predictable, relatively easy to explain
— Many different features can be incorporated

— Efficient processing since many documents can be
eliminated from search

* Disadvantages
— Effectiveness depends entirely on user
— Simple queries usually don’t work well
— Complex queries are difficult

Searching by Numbers

* Sequence of queries driven by number of
retrieved documents

— e.g. “lincoln” search of news articles
— president AND lincoln
— president AND lincoln AND NOT (automobile OR car)

— president AND lincoln AND biography AND life AND
birthplace AND gettysburg AND NOT (automobile OR
car)

— president AND lincoln AND (biography OR life OR
birthplace OR gettysburg) AND NOT (automobile OR
car)

Vector Space Model

* Documents and query represented by a vector
of term weights

* Collection represented by a matrix of term
weights

D; = (di1,dio,...,dir) Q=1(q1,92,---,q)

Termy Termos ... Termy
DOCl dll d12 “e dlt

DOCQ d21 d22 .« dgt

DOCn dnl dng ce dnt

Vector Space Model

D, Tropical Freshwater Aquarium Fish.

D, Tropical Fish, Aquarium Care, Tank Setup.

Ds; Keeping Tropical Fish and Goldfish in Aquariums,
and Fish Bowls.

Ds The Tropical Tank Homepage - Tropical Fish and

Agquariums.

Terms Documents

D, D, Ds D,
aguarium 1 1 1 1
bowl 0 0 1 0
care 0 1 0 0
fish 1 1 % 1
freshwater 1 0 0 0
goldfish 0 0 1 0
homepage 0 0 0 1
keep 0 0 1 0
setup 0 1 0 0
tank 0 1 0 1
tropical 1 1 1 2

Vector Space Model

* 3-d pictures useful, but can be misleading for
high-dimensional space

Vector Space Model

* Documents ranked by distance between
points representing query and documents

— Similarity measure more common than a distance
or dissimilarity measure

— e.g. Cosine correlation

t
> dijeqy
j=1

Cosine(D;, Q) =
> dig2) q52

Similarity Calculation

— Consider two documents D; D, and a query Q
- D,=(0.5,0.8,0.3),D,=(0.9,0.4,0.2), Q= (1.5, 1.0, 0)

(0.5 x 1.5) 4+ (0.8 x 1.0)

v/ (0.52 +0.82 + 0.32)(1.5% + 1.0?)

1.
= 00 = 0.87
\/(0.98 x 3.25)

Cosine(D1,Q) =

(0.9 x 1.5) + (0.4 x 1.0)

V/(0.92 4 0.42 4 0.22)(1.52 + 1.0?)

1.75
= — 0.97
v/(1.01 x 3.25)

Cosine(D2,Q) =

Term Weights

e tf.idf weight

— Term frequency weight measures importance in

document: tfi, = L=
> i

— Inverse document frequency measures
importance in collection: idf, =log &

— Some heuristic modifications

di = (log(fir)+1)-log(N/ny)

\/Z [(log(fix)+1.0)-log(N/ny)]?

k=1

Relevance Feedback

* Rocchio algorithm
* Optimal query

— Maximizes the difference between the average
vector representing the relevant documents and
the average vector representing the non-relevant
documents

 Modifies query according to
q; = Q.qj T ﬁﬁ ZDiERel dij -7 |N0;Lw“el| zDiéNonrel dij

— a, 8, and y are parameters
* Typical values 8, 16, 4

Vector Space Model

* Advantages
— Simple computational framework for ranking

— Any similarity measure or term weighting scheme
could be used

* Disadvantages
— Assumption of term independence

— No predictions about techniques for effective
ranking

Probability Ranking Principle

* Robertson (1977)

— “If a reference retrieval system’s response to each
request is a ranking of the documents in the collection
in order of decreasing probability of relevance to the
user who submitted the request,

— where the probabilities are estimated as accurately as
possible on the basis of whatever data have been
made available to the system for this purpose,

— the overall effectiveness of the system to its user will
be the best that is obtainable on the basis of those
data.”

IR as Classification

Relevant
Documents

The rain in Spain falls
mainly Tn the plain
The rain in Spain falls

mainly in the plain
The rain in Spain falls
mainly in the plain P
The rain in Spain falls
mainly Tn the plain

/

Document

Non-Relevant

Documents

Bayes Classifier

* Bayes Decision Rule
— A document D is relevant if P(R|D) > P(NR| D)

* Estimating probabilities

— use Bayes Rule

P(R|D) = HE 070

— classify a document as relevant if

P(D|R) P(NR)
P(DINR) ~ P(R)

* |hs is likelihood ratio

Estimating P(D|R)

* Assume independence
P(DIR) = [T;—, P(di|R)

* Binary independence model

— document represented by a vector of binary
features indicating term occurrence (or non-
occurrence)

— p, is probability that term i occurs (i.e., has value
1) in relevant document, s; is probability of
occurrence in non-relevant document

Binary Independence Model

P(D|R) _ pi 1—p;
P(D|NR) D Hi2d7;:1 Si Hi:dizo 1—87;

1—s; 1—p; 1—p;
o Hz rd; =1 sz . (Hi:dizl 1—}897; . Hi:dizl 1—1897;) . Hi:dZ-:O 1—1;7;

1— Si 1— 7
_sz—l Szgl ng H’Ll——ISDZ

Binary Independence Model

* Scoring function is

i(1—s4
2 ird;—1 108 §i§1—pig

* Query provides information about relevant
documents

* If we assume p, constant, s; approximated by
entire collection, get idf-like weight

0.5(1— &) N—n.
log =; Nt — Jog ——

Contingency Table

Relevant Non-relevant Total
di = T; n; —r; n;
dri: R—TZ' N—ni—Rer‘ N—Ti
Total R N —R N

Gives scoring function:

(r;40.5)/(R—1;40.5)

Zi:di:qizl lOg (n;—r;4+0.5)/(N—n; —R+7r;+0.5)

BM25

e Popular and effective ranking algorithm based
on binary independence model

— adds document and query term weights

(Ti—|—0.5)/(R—’I‘Z‘—|—O.5) . (k1—|—1)fz . (k2—|—1)qf7;

Zie@ log (ni—71:+0.5)/(N—n; —R+7:,40.5) K+ f: katqfi

— ki, k2and K are parameters whose values are set
empirically
— K=k((1-b)+b- ;057 dlisdoclength

— Typical TREC value for k. is 1.2, k. varies from O to
1000, b =0.75

BM25 Example

Query with two terms, “president lincoln”, (gf = 1)

No relevance information (r and R are zero)

N = 500,000 documents

“president” occurs in 40,000 documents (n, = 40, 000)
“lincoln” occurs in 300 documents (n, = 300)
“president” occurs 15 times in doc (f; = 15)

“lincoln” occurs 25 times (f, = 25)

document length is 90% of the average length (dl/avdl
=.9)

k,=1.2,b=0.75,and k, =100
K=1.2-(0.25+0.75-0.9)=1.11

BM25 Example

BM?25(Q,D) =
(0+0.5)/(0 — 0+ 0.5)

1
°% (40000 — 0 + 0.5) /(500000 — 40000 — 0 + 0 + 0.5)

(124115 (100 + 1)1
1.11 + 15 100 + 1
(0+0.5)/(0— 0+ 0.5)
(300 — 0 + 0.5) /(500000 — 300 — 0 + 0 + 0.5)
L(1.2+1)25 (100 + 1)1
1.11 + 25 100 + 1

+ log

= log 460000.5,/40000.5 - 33/16.11 - 101/101
+1log 499700.5/300.5 - 55/26.11 - 101/101

— 244.2.05-1+4742-2.11-1

= 5.00 + 15.66 = 20.66

BM25 Example

e Effect of term frequencies

Frequency of | Frequency of | BM25
“president” “lincoln” score
15 25 20.66

15 1 12.74

15 0 5.00

1 25 18.2

0 25 15.66

Language Model

 Unigram language model
— probability distribution over the words in a
language

— generation of text consists of pulling words out of
a “bucket” according to the probability
distribution and replacing them

* N-gram language model

— some applications use bigram and trigram
language models where probabilities depend on
previous words

Language Model

* A topicin a document or query can be
represented as a language model

—i.e., words that tend to occur often when
discussing a topic will have high probabilities in
the corresponding language model

e Multinomial distribution over words

— text is modeled as a finite sequence of words,
where there are t possible words at each point in
the sequence

— commonly used, but not only possibility
— doesn’t model burstiness

LMs for Retrieval

* 3 possibilities:

— probability of generating the query text from a
document language mode

— probability of generating the document text from
a query language model

— comparing the language models representing the
qguery and document topics

 Models of topical relevance

Query-Likelihood Model

Rank documents by the probability that the
guery could be generated by the document
model (i.e. same topic)

Given query, start with P(D|Q)
Using Bayes’ Rule
p(D|Q) "=" P(Q|D)P(D)
Assuming prior is uniform, unigram model

P(Q|D) = II,—, P(q:|D)

Estimating Probabilities

* Obvious estimate for unigram probabilities is

fa;,
P(q:| D) = T2

* Maximum likelihood estimate
— makes the observed value of f.omost likely

* |f query words are missing from document,
score will be zero

— Missing 1 out of 4 query words same as missing 3
out of 4

Smoothing

* Document texts are a sample from the
language model

— Missing words should not have zero probability of
occurring
 Smoothing is a technique for estimating
probabilities for missing (or unseen) words

— lower (or discount) the probability estimates for
words that are seen in the document text

— assign that “left-over” probability to the estimates
for the words that are not seen in the text

Estimating Probabilities

* Estimate for unseen words is a,P(q;| C)

— P(q;| C) is the probability for query word i in the
collection language model for collection C
(background probability)

— 0l IS @ parameter
 Estimate for words that occur is
(1-ap) P(q;| D) + a, P(g;| C)

e Different forms of estimation come from
different o,

Jelinek-Mercer Smoothing

* a,is aconstant, A
* Gives estimate of

fa;.D |y Cq
plai| D) = (1 = N5 + A

e Ranking score
P(QID) =TTi=, (1 = L2 + Arar)
* Use logs for convenience

— accuracy problems multiplying small numbers

log P(Q|D) = 2?21 log((1 —A) f|qD| T)‘|C|)

Where is tf.idf Weight?

- f
log P(QID) = > log((1—A) “ID| +)\‘C|)
=1
= Z log((1—A)fqz + A q")+ Z log ch
) | D| C ICI
qui,D>0 quz
fa: D c
(1= NI + 2
_ Z log |€)q| M) —|—Zlog qu
| AT \C\
z:fqi,D>0 &
rank ((1_)\> D|
— 1 1
. Z 08 \ 24 T
'Z/:fqi,D>0 |C|

- proportional to the term frequency, inversely
proportional to the collection frequency

Dirichlet Smoothing

* a,depends on document length

_ 19
AD = TDl+5

* Gives probability estimation of

/ i,D—|—:uCQi
p(¢:|D) = = |D|—|—u|0|

e and document score

Cq.
n qu;,D‘|‘:“|cz|

log P(Q|D) = }_;_, log [D]+u

Query Likelihood Example

For the term “president”
~ f.ip =15, ¢,;= 160,000
For the term “lincoln”

— foip =25, ¢, = 2,400

number of word occurrences in the document
|d| is assumed to be 1,800

number of word occurrences in the collection is
10°

— 500,000 documents times an average of 2,000 words
= 2,000

Query Likelihood Example

15 4 2000 x (1.6 x 10°/10°)
1800 + 2000

25 + 2000 x (2400/10)
1800 + 2000

= log(15.32/3800) + log(25.005/3800)

= —9.51 4+ —5.02 = —10.53

QL(Q,D) = log

+ log

* Negative number because summing logs
of small numbers

Query Likelihood Example

Frequency of | Frequency of QL
“president” “lincoln” score
15 25 -10.53
15 1 -13.75
15 0 -19.05
1 25 -12.99
0 25 -14.40

Relevance Models

e Relevance model — language model
representing information need

— query and relevant documents are samples from
this model
 P(D[R) - probability of generating the text in a
document given a relevance model
— document likelihood model

— |ess effective than query likelihood due to
difficulties comparing across documents of
different lengths

Pseudo-Relevance Feedback

* Estimate relevance model from query and top-
ranked documents

 Rank documents by similarity of document
model to relevance model

* Kullback-Leibler divergence (KL-divergence) is
a well-known measure of the difference
between two probability distributions

KL-Divergence

* Given the true probability distribution P and
another distribution Q that is an
approximation to P,

KL(P||Q) = ¥, P(x)log 5

— Use negative KL-divergence for ranking, and
assume relevance model R is the true distribution
(not symmetric),

2 wev P(w|R)log P(w|D) =3 ,,c, P(w|R)log P(w|R)

KL-Divergence

* Given a simple maximum likelihood estimate
for P(W/R), based on the frequency in the
query text, ranking score is

Jw,
> wev 152 log P(w|D)
— rank-equivalent to query likelihood score

* Query likelihood model is a special case of
retrieval based on relevance model

Estimating the Relevance Model

* Probability of pulling a word w out of the
“bucket” representing the relevance model
depends on the n query words we have just
pulled out

P(w|R) =~ P(wl|q1 ...qn)
* By definition

P w,qi...dn
P(w|R) ~ “ptesty

Estimating the Relevance Model

* Joint probability is

P(w,q1---qn) = 2 pee P(D)P(w,q1. .. qu|D)

e Assume
P(w,q1-..qn|D) = P(w|D)];—; P(a:|D)

e GGives

P(w,q1...qn) = X pec P(D)P(w|D) [T;—; P(a:|D)

Estimating the Relevance Model

* P(D) usually assumed to be uniform

* P(w,qgl...qn)issimply a weighted average of
the language model probabilities for win a set
of documents, where the weights are the
query likelihood scores for those documents

* Formal model for pseudo-relevance feedback

— guery expansion technique

Pseudo-Feedback Algorithm

. Rank documents using the query likelihood score for query Q).
. Select some number of the top-ranked documents to be the set C.

. Calculate the relevance model probabilities P(w|R). P(q1...q,) is used
as a normalizing constant and is calculated as

Plqi...qn) = Z P(w,q...qn)

. Rank documents again using the KL-divergence score

> P(w|R)log P(w|D)

Example from Top 10 Docs

president lincoln | abraham lincoln fishing tropical fish
lincoln lincoln fish fish
president america, farm tropic
room president salmon japan
bedroom faith new aquarium
house guest wild water
white abraham water species
america new caught aquatic
guest room catch fair
serve christian tag china
bed history time coral
washington public eat source
old bedroom raise tank
office war city reef
war politics people animal
long old fishermen tarpon
abraham national boat fishery

Example from Top 50 Docs

president lincoln | abraham lincoln fishing tropical fish
lincoln lincoln fish fish
president president water tropic
america america catch water
new abraham reef storm
national war fishermen species
great man river boat
white civil new sea,
war new year river
washington history time country
clinton two bass tuna
house room boat world
history booth world million
time time farm state
center politics angle time
kennedy public fly japan
room guest trout mile

Combining Evidence

* Effective retrieval requires the combination of
many pieces of evidence about a document’s
potential relevance
— have focused on simple word-based evidence

— many other types of evidence

 structure, PageRank, metadata, even scores from
different models

* Inference network model is one approach to
combining evidence

— uses Bayesian network formalism

Inference Network

Inference Network

 Document node (D) corresponds to the event
that a document is observed

* Representation nodes (r;) are document
features (evidence)

— Probabilities associated with those features are
based on language models 0 estimated using the
parameters U

— one language model for each significant document
structure

— r. nodes can represent proximity features, or other
types of evidence (e.g. date)

Inference Network

* Query nodes (q;) are used to combine
evidence from representation nodes and
other query nodes

— represent the occurrence of more complex
evidence and document features

— a number of combination operators are available

* Information need node (l) is a special query
node that combines all of the evidence from

the other query nodes
— network computes P(l|D,)

Example: AND Combination

a and b are parent nodes for q

P(q = TRUE|a, b) a b
0 FALSE | FALSE
0 FALSE | TRUE
0 TRUE | FALSE
1 TRUE | TRUE

Example: AND Combination

 Combination must consider all possible states
of parents

 Some combinations can be computed
efficiently

belana(q) = pooP(a = FALSE)P(b = FALSE)
+po1P(a = FALSE)P(b = TRUE)
+p10P(a = TRUE)P(b = FALSE)
+p11P(a = TRUE)P(b = TRUE)
= 0-(1=pa)(1—=pp)+0-(1—pa)pp+0-pa(l—ps)+1-papy
= DaDPbv

Inference Network Operators

belnot (Q) = 1- P1

n

belor(q) = 1 — H(l — ;)

beland(Q) — sz

belwand(Q) — Hpg}ti
belmazr(q) = mazx{pi,p2,..., Pn}
belsum(Q) — ZZ b
n

wtp;
belwsum(Q) — %n ot
i i

Galago Query Language

A document is viewed as a sequence of text
that may contain arbitrary tags

* Asingle context is generated for each unique
tag name

* An extent is a sequence of text that appears
within a single begin/end tag pair of the same
type as the context

Galago Query Language

<html>

<head>

<title>Department Descriptions</title>
</head>

<body>

The following list describes ...

<h |=Agriculture</h| > ...

<h |=Chemistry=/h|=> ...
<h|>Computer Science</hl> ...
<h |>Electrical Engineering<'h|> ...
</body=

</html=

ritle conrext:

<title>Department Descriptions</title>

hl context:

<h|>Agriculture</h|>
<h|=>Chemistry</hl> ...
<h|>Computer Science</hl=> ...
<h|>Electrical Engineering</h|> ...

body context:

<body> The following list describes ...
<h|>Agriculture</h|> ...
<h|>Chemistry</h|> ...

<h |>Computer Science</hl> ...

<h | >Electrical Engineering<'hl=> ...
</body=

Galago Query Language

Simple terms:

term — term that will be normalized and stemmed.
"term” — term is not normalized or stemmed.
Examples:

presidents
"NASA"

Galago Query Language

Proximity terms:

#o0d:N(...) — ordered window — terms must appear ordered, with
at most N-1 terms between each.

#od(...) — unlimited ordered window — all terms must appear
ordered anywhere within current context.

#uw:N(...) — unordered window — all terms must appear within a
window of length N in any order.

#uw(...) — unlimited unordered window — all terms must appear
within current context in any order.

Examples:

#o0d:1(white house) — matches “white house” as an exact phrase.
#o0d:2(white house) — matches “white * house” (where * is any word
or null).

#uw:2(white house) — matches “white house” and “house white”.

Galago Query Language

Synonyms:

H#Hsyn(...)

#Hwsyn(...)

Examples:

#syn(dog canine) — simple synonym based on two terms.

#syn(#od:1(united states) #od:1(united states of america)) — cre-
ates a synonym from two proximity terms.

#wsyn(1.0 donald 0.8 don 0.5 donnie) — weighted synonym indi-
cating relative importance of terms.

Galago Query Language

Anonymous terms:

#any:.() — used to match extent types

Examples:

#any:person() — matches any occurrence of a person extent.
#od:1(lincoln died in #any:date()) — matches exact phrases of the
form: “lincoln died in <date>...</date>".

Galago Query Language

Context restriction and evaluation:

expression.C1,,...,CN — matches when the expression appears in all
contexts C1 through CN.

expression.(C1,...,CN) — evaluates the expression using the language
model defined by the concatenation of contexts C1...CN within the
document.

Examples:

dog.title — matches the term “dog” appearing in a title extent.
#uw(smith jones).author — matches when the two names “smith” and
“jones” appear in an author extent.

dog.(title) — evaluates the term based on the title language model
for the document.

#o0d:1(abraham lincoln).person.(header) — builds a language model
from all of the “header” text in the document and evaluates #od:1(abraham
lincoln).person in that context (i.e., matches only the exact phrase
appearing within a person extent within the header context).

Galago Query Language

Belief operators:

#combine(...) — this operator is a normalized version of the bel,,,q(q)
operator in the inference network model. See the discussion below
for more details.

#weight(...) — this is a normalized version of the bel,,qnq4(q) opera-
tor.

#filter(...) — this operator is similar to #combine, but with the dif-
ference that the document must contain at least one instance of all
terms (simple, proximity, synonym, etc.). The evaluation of nested
belief operators is not changed.

Galago Query Language

Examples:

#combine(#syn(dog canine) training) — rank by two terms, one of
which is a synonym.

#combine(biography #syn(#od:1(president lincoln) #od:1(abraham
lincoln))) — rank using two terms, one of which is a synonym of
“president lincoln” and “abraham lincoln”.

Hweight(1.0 #od:1(civil war) 3.0 lincoln 2.0 speech) — rank using
three terms, and weight the term “lincoln” as most important, fol-
lowed by “speech”, then “civil war”.

#filter(aquarium #combine(tropical fish)) — consider only those doc-
uments containing the word “aquarium” and “tropical” or “fish”,
and rank them according to the query #combine(aquarium #com-
bine(tropical fish)).

#filter(#od:1(john smith).author) #weight(2.0 europe 1.0 travel) —
rank documents about “europe” or “travel” that have “John Smith”
in the author context.

Web Search

 Most important, but not only, search
application
* Major differences to TREC news
— Size of collection
— Connections between documents
— Range of document types
— Importance of spam
— Volume of queries
— Range of query types

Search Taxonomy

* Informational

— Finding information about some topic which may
be on one or more web pages

— Topical search
* Navigational

— finding a particular web page that the user has
either seen before or is assumed to exist

e Transactional

— finding a site where a task such as shopping or
downloading music can be performed

Web Search

* For effective navigational and transactional
search, need to combine features that reflect

user relevance

* Commercial web search engines combine
evidence from hundreds of features to
generate a ranking score for a web page

— page content, page metadata, anchor text, links
(e.g., PageRank), and user behavior (click logs)

— page metadata — e.g., “age”, how often it is
updated, the URL of the page, the domain name
of its site, and the amount of text content

Search Engine Optimization

* SEO: understanding the relative importance of
features used in search and how they can be
manipulated to obtain better search rankings
for a web page
— e.g., improve the text used in the title tag,

improve the text in heading tags, make sure that
the domain name and URL contain important

keywords, and try to improve the anchor text and
link structure

— Some of these techniques are regarded as not
appropriate by search engine companies

Web Search

* |In TREC evaluations, most effective features
for navigational search are:

— text in the title, body, and heading (h1, h2, h3, and
h4) parts of the document, the anchor text of all
links pointing to the document, the PageRank
number, and the inlink count

* Given size of Web, many pages will contain all

query terms

— Ranking algorithm focuses on discriminating
between these pages

— Word proximity is important

Term Proximity

 Many models have been developed

* N-grams are commonly used in commercial
web search

* Dependence model based on inference net has
been effective in TREC - e.g.

Hweight(
0.8 #combine(embryonic stem cells)
0.1 #combine(#od:1(stem cells) #od:1(embryonic stem)
#o0d:1(embryonic stem cells))
0.1 #combine(#uw:8(stem cells) #uw:8(embryonic cells)
#uw:8(embryonic stem) #uw:12(embryonic stem cells)))

Example Web Query

FHweight(
0.1 #weight(0.6 #prior(pagerank) 0.4 #prior(inlinks))
1.0 #weight(
0.9 #combine(
#weight(1.0 pet.(anchor) 1.0 pet.(title)
3.0 pet.(body) 1.0 pet.(heading))
#weight(1.0 therapy.(anchor) 1.0 therapy.(title)
3.0 therapy.(body) 1.0 therapy.(heading)))
0.1 #weight(
1.0 #od:1(pet therapy).(anchor) 1.0 #od:1(pet therapy).(title)
3.0 #od:1(pet therapy).(body) 1.0 #od:1(pet therapy).(heading))
0.1 #weight(
1.0 #uw:8(pet therapy).(anchor) 1.0 #uw:8(pet therapy).(title)
3.0 #uw:8(pet therapy).(body) 1.0 #uw:8(pet therapy).(heading)))

Machine Learning and IR

e Considerable interaction between these fields

— Rocchio algorithm (60s) is a simple learning
approach

— 80s, 90s: learning ranking algorithms based on
user feedback

— 2000s: text categorization
* Limited by amount of training data

* Web query logs have generated new wave of
research

— e.g., “Learning to Rank”

Generative vs. Discriminative

* All of the probabilistic retrieval models

presented so far fall into the category of
generative models

— A generative model assumes that documents were
generated from some underlying model (in this
case, usually a multinomial distribution) and uses

training data to estimate the parameters of the
model

— probability of belonging to a class (i.e. the relevant
documents for a query) is then estimated using
Bayes’ Rule and the document model

Generative vs. Discriminative

e Adiscriminative model estimates the

probability of belonging to a class directly
from the observed features of the document
based on the training data

* Generative models perform well with low
numbers of training examples

* Discriminative models usually have the
advantage given enough training data

— Can also easily incorporate many features

Discriminative Models for IR

* Discriminative models can be trained using
explicit relevance judgments or click data in
query logs
— Click data is much cheaper, more noisy

— e.g. Ranking Support Vector Machine (SVM) takes
as input partial rank information for queries

 partial information about which documents should be
ranked higher than others

Ranking SVM

* Training data is

(Q17 Tl)a (qQa TQ)? s ey (Qna Tn)
— r is partial rank information

* if document dashould be ranked higher than db, then
(da, db) E ri
— partial rank information comes from relevance
judgments (allows multiple levels of relevance) or
click data
e e.g., di, d2and dszare the documents in the first, second

and third rank of the search output, only ds clicked on
— (ds, d1) and (ds, dz2) will be in desired ranking for this

query

Ranking SVM

* Learning a linear ranking function w.d,

— where w is a weight vector that is adjusted by
learning

— d is the vector representation of the features of
document

— non-linear functions also possible

* Weights represent importance of features
— learned using training data

wd=(2,1,2).(2,4,1) =22+ 1.4+ 2.1 = 10

Ranking SVM

* Learn w that satisfies as many of the following
conditions as possible:

d;

Sy

\V/(dz,dj) cry u_fd_; >

d;

Sy

V(di,d;) €ry o W.d; >

* Can be formulated as an optimization problem

Ranking SVM

MINITMIZE -
subject to :
\Vl(dz, d]) cry . w.d; > U_J)Ci; + 1 — f’i,j,l

V(di,d;) €rp : Wd; >Wd; +1—& in
ViVivk : &, 4,k > 0

— &, known as a slack variable, allows for
misclassification of difficult or noisy training
examples, and Cis a parameter that is used to

prevent overfitting

Ranking SVM

Software available to do optimization

Each pair of documents in our training data can
be represen’ied bqy the vector:

(d; — dj)
Score for this pair is:

.(d; — dj)
SVM classifier will find a w that makes the
smallest score as large as possible

— make the differences in scores as large as possible for
the pairs of documents that are hardest to rank

Topic Models

* Improved representations of documents

— can also be viewed as improved smoothing
techniques

— improve estimates for words that are related to
the topic(s) of the document

* instead of just using background probabilities
* Approaches
— Latent Semantic Indexing (LSI)
— Probabilistic Latent Semantic Indexing (pLSl)
— Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation (LDA)

* Model document as being generated from a
mixture of topics

1. For each document D, pick a multinomial distribution 6p
from a Dirichlet distribution with parameter « ,

2. For each word position in document D,

(a) pick a topic z from the multinomial distribution 6p |,

(b) Choose a word w from P(w|z,), a multinomial
probability conditioned on the topic z
with parameter (.

LDA

* Gives language model probabilities
Pigq(w|D) = P(w|p, 8) =, P(w|z, 8)P(z|0p)

* Used to smooth the document representation
by mixing them with the query likelihood
probability as follows:

fw,D‘|‘,u|CTw

P(w|D) = A ("5) + (1= A)Pua(w] D)

LDA

* |f the LDA probabilities are used directly as the
document representation, the effectiveness
will be significantly reduced because the
features are too smoothed

— e.g., in typical TREC experiment, only 400 topics
used for the entire collection

— generating LDA topics is expensive

* When used for smoothing, effectiveness is
improved

LDA Example

— Top words from 4 LDA topics from TREC news

Arts Budgets Children Education
new million children school
film tax women students
show program people schools
music budget child education
movie billion years teachers
play federal families high
musical year work public
best spending parents teacher
actor new says bennett
first state family manigat
york plan welfare namphy
opera money men state
theater programs percent president
actress government care elementary
love congress life haiti

Summary

Best retrieval model depends on application
and data available

Evaluation corpus (or test collection), training
data, and user data are all critical resources

Open source search engines can be used to
find effective ranking algorithms

— Galago query language makes this particularly
easy

Language resources (e.g., thesaurus) can make
a big difference

	Search Engines
	Retrieval Models
	Relevance
	Retrieval Model Overview
	Boolean Retrieval
	Boolean Retrieval
	Searching by Numbers
	Vector Space Model
	Vector Space Model
	Vector Space Model
	Vector Space Model
	Similarity Calculation
	Term Weights
	Relevance Feedback
	Vector Space Model
	Probability Ranking Principle
	IR as Classification
	Bayes Classifier
	Estimating P(D|R)
	Binary Independence Model
	Binary Independence Model
	Contingency Table
	BM25
	BM25 Example
	BM25 Example
	BM25 Example
	Language Model
	Language Model
	LMs for Retrieval
	Query-Likelihood Model
	Estimating Probabilities
	Smoothing
	Estimating Probabilities
	Jelinek-Mercer Smoothing
	Where is tf.idf Weight?
	Dirichlet Smoothing
	Query Likelihood Example
	Query Likelihood Example
	Query Likelihood Example
	Relevance Models
	Pseudo-Relevance Feedback
	KL-Divergence
	KL-Divergence
	Estimating the Relevance Model
	Estimating the Relevance Model
	Estimating the Relevance Model
	Pseudo-Feedback Algorithm
	Example from Top 10 Docs
	Example from Top 50 Docs
	Combining Evidence
	Inference Network
	Inference Network
	Inference Network
	Example: AND Combination
	Example: AND Combination
	Inference Network Operators
	Galago Query Language
	Galago Query Language
	Galago Query Language
	Galago Query Language
	Galago Query Language
	Galago Query Language
	Galago Query Language
	Galago Query Language
	Galago Query Language
	Web Search
	Search Taxonomy
	Web Search
	Search Engine Optimization
	Web Search
	Term Proximity
	Example Web Query
	Machine Learning and IR
	Generative vs. Discriminative
	Generative vs. Discriminative
	Discriminative Models for IR
	Ranking SVM
	Ranking SVM
	Ranking SVM
	Ranking SVM
	Ranking SVM
	Topic Models
	Latent Dirichlet Allocation (LDA)
	LDA
	LDA
	LDA Example
	Summary

